INEQUALITIES FOR POINT STABLE DESIGNS

A. Neumaier and K.E. Wolff*

ABSTRACT

A design with incidence matrix A is called point stable if $AA^TJ=\alpha J$ for some integer α , where J is the all-one-matrix. We derive inequalities for point stable designs generalizing the MULLIN-VANSTONE-inequality for (r,λ) -designs, the FISHER-inequality for 2-designs, the HANANI-inequality for transversal designs, an inequality for partial geometric designs and the CONNOR-MAJUMDAR-SHAH-AGRAWAL-inequalities for the intersection numbers of 1-designs.

1. NOTATIONS

A design (or incidence structure) D = (P,B,I) with $(v \times b)$ -incidence matrix A (v = |P|, b = |B|) is called *point stable* if NJ = JN, where $N = AA^T$ and J is the all-one-matrix. D is point stable iff $NJ = \alpha J$ for some integer α . Then D is called a $PSI(\alpha)$, and a $PSI(\alpha,r)$ if furthermore AJ = rJ. A design D is a $PSI(\alpha)$ iff $\sum_{p \in P} [B] = \alpha$ for all points p, where [B] denotes the number of points on the [B] block [B] and [A] is the maximal eigenvalue of [A] and its multiplicity equals the number of connected components of [D].

EXAMPLES: Any 1-(v,k,r)-design is a PSI(rk), any (r,λ) -design is a PSI $(r+\lambda(v-1))$.

In the following we always require the nondegeneracy conditions (1.1) $2 \le [p] < b$, $2 \le [B] < v$ for all points p and blocks B, where [p] is the number of blocks through p. Then $\alpha < \sigma$, where $\sigma = |I| = \text{trace N (cf. [12])}$.

2. SOME BASIC INEQUALITIES

First we mention two variance inequalities.

THEOREM 2.1 [12]: Let D be a $PSI(\alpha)$. Then

$$\alpha \geq \frac{\sigma^2}{vh}$$
,

with equality iff [B] = $\frac{\sigma}{b}$ for all blocks B.

PROOF:
$$0 \le \frac{\sum}{B \in B} ([B] - \frac{\sigma}{b})^2 = \sum_{B \in B} [B]^2 - \frac{\sigma^2}{b} = v_{\alpha} - \frac{\sigma^2}{b}$$
.

REMARK: If D is a l-(v,k,r)-design, then Thm.2.1. yields the first FISHER-equation vr = bk.

. Since an (r,λ) -design is a $PSI(r+\lambda(v-1))$ with $\sigma=vr$ we obtain

COROLLARY 2.2 (MULLIN-VANSTONE [9]): Let D be an (r,λ) -design. Then $b \geqslant \frac{vr^2}{r+\lambda(v-1)},$

with equality iff D is a 2-design.

REMARK: McCARTHY, VANSTONE [8] obtained this inequality from a determinantal condition on CONNOR's characteristic matrix.

For any point p let $w(p) = \sum_{q \in P \setminus \{p\}} [p,q]^2$, i.e. the number of paths (p,B,q,C,p) with $q \neq p$.

THEOREM 2.3: Let D be a $PSI(\alpha)$. Then

 $w(p) \geq (v-1)^{-1}(\alpha - [p])^2 \quad \text{for all points p,}$ with equality iff $[p,q] = (v-1)^{-1}(\alpha - [p]) \quad \text{for all} \quad q \neq p$.

PROOF:
$$0 \le \frac{\sum_{q \in P \setminus \{p\}} ([p,q] - (v-1)^{-1}(\alpha - [p]))^2 = w(p) - (v-1)^{-1}(\alpha - [p])^2$$

COROLLARY 2.4: Let D be α PSI(α ,r). Then

$$w(p) \ge (v-1)^{-1}(\alpha - r)^2 \text{ for all points } p,$$
 with equality iff D is an (r,λ) -design with $\lambda = (v-1)^{-1}(\alpha - r)$.

REMARK: Note that $\lambda = (v-1)^{-1}(\alpha - r)$ yields the second FISHER-equation $\lambda(v-1) = r(k-1)$ for $2-(v,k,\lambda)$ -designs.

3. AN EIGENVALUE INEQUALITY

The following inequality generalizes inequalities for semi partial geometric designs [12] and partial geometric designs [10].

THEOREM 3.1: Let D be a connected PSI(a), specN\{0} = {\$\alpha,\rho_1,\ldots,\rho_m\$}, \alpha > \rho_1 > \ldots > \rho_m and let the corresponding multiplicities be 1, τ_1,\ldots,τ_m . Then

$$\rho_m \geqslant \frac{\sigma - \alpha - \rho_1 \tau_1 - \dots - \rho_{m-1} \tau_{m-1}}{v - 1 - \tau_1 - \dots - \tau_{m-1}}$$

with equality iff detN > 0.

PROOF: Clearly
$$\sigma = \alpha + \sum_{i=1}^{m} \rho_i \tau_i$$
 and $1 + \sum_{i=1}^{m} \tau_i \leq v$

with equality iff 0 ∉ specN.

COROLLARY 3.2 [12]: Let D be a connected PSI(α) with specM(0) = { α , ρ } , α > ρ , then

$$\rho \geqslant \frac{\sigma - \alpha}{v - 1}$$
,

with equality iff D is an (r,λ) -design.

PROOF: A connected point stable design is an (r,λ) -design iff |specN| = 2 (cf. [12]).

A partial geometric design is a 1-design satisfying NA - ρ A = tJ for some ρ ,t $\in \mathbb{R}$ (in fact ρ ,t are positive integers). BOSE, BRIDGES, SHRIKHANDE [3] proved that a connected 1-design is partial geometric iff |specN\{0}| = 2.

Now application of Corollary 3.2 and some elementary calculations show

COROLLARY 3.3 [10]: Let D be a partial geometric l-(v,k,r)-design and NA - $\rho A=tJ$, then

$$t \ge k(r - \rho)$$
,

with equality iff D is a 2-design.

REMARK: Since the dual of a partial geometric design is partial geometric (with the same ρ ,t), also the dual inequality $t \ge r(k-\rho)$ holds, with equality iff the dual of D is a 2-design. Therefrom one may derive (cf. [10])

- (i) the FISHER-inequality $b \ge v$ for 2-(v,k,λ)-designs, with equality iff D is a symmetric 2-design,
- (ii) the HANANI-inequality [6] $k \le (\lambda u^2 1)(u 1)^{-1}$ for transversal designs TD[k,λ,u] (u > 1), with equality iff the dual of D is a 2-design (and hence an affine design).

4. DETERMINANT FORMULAE

Let D be a design and m a nonnegative integer.

- 4.1 The m+2 (v×v)-matrices $N^0, N^1, N^2, \ldots, N^m$, J are dependent (in $\mathbb{R}^{V \times V}$) iff there is a real monic polynomial f(X) of degree $af(X) \leq m$ such that f(N) = tJ for some real t.
- 4.2 The m+2 (v×b)-matrices A, NA, N^2A ,..., N^mA , J are dependent (in $\mathbb{R}^{V \cdot V}$) iff there is a real monic polynomial f(X) of degree $\Im f(X) \le m$ such that f(N)A = tJ for some real t.

DEFINITION 4.3 [13]: The point rank Pr(D) (resp. the rank R(D)) is the minimal degree of a real monic polynomial f(X) such that f(N) = tJ (resp. f(N)A = tJ) for some real t.

EXAMPLES: (i) Pr(D) = 1 iff D is an (r,λ) -design.

(ii) Supposed that D is point stable. Then R(D) = 1 iff D is partial geometric (cf. [13]). From (4.1.,4.2.) it is easy to see that

- (1) N^0 , N^1 ,..., N^m , J are dependent iff $Pr(D) \leq m$,
- (2) A, NA, ..., $N^{m}A$, J are dependent iff $R(D) \leq m$.

Now let D be a PSI(lpha) and $t_{_{\mathbf{S}}}$ be the trace of N^S (s a nonnegative integer),

hence

 $\mathbf{t}_s^{s'} = \sum_{p \in P} (N^s)_{p,p}$ is the number of closed paths of length s. Then the Gram-matrices

 $\mathbf{G}_{\mathbf{m}} = \operatorname{Gram}(\mathbf{N}^{0}, \mathbf{N}^{1}, \dots, \mathbf{N}^{\mathbf{m}}, \mathbf{J}) = (\mathbf{g}_{i,j})_{i,j} = 0, \dots, \mathbf{m+1} \quad \text{and} \quad$

 $H_{m} = Gram(A,NA,...,N^{m}A,J) = (h_{ij})_{i,j} = 0,...,m+1$

of the vectors N^0,\ldots,N^m , $J\in\mathbb{R}^{VV}$ (resp. A,NA,..., $N^mA,J\in\mathbb{R}^{Vb}$) have the following entries: For $0\leq i,j\leq m$

$$g_{ij} = \frac{\sum_{p,q \in P} (N^{i})_{p,q} (N^{j})_{p,q}}{(N^{i})_{p,q}} = \sum_{p \in P} (N^{i+j})_{p,p} = t_{i+j},$$

$$g_{1,m+1} = g_{m+1,1} = \sum_{p,q \in P} (N^{\dagger})_{p,q} = J_{1,v}N^{\dagger}J_{v,1} = \alpha^{\dagger}v,$$

 $g_{m+1,m+1} = v^2$

$$h_{i,j} = \frac{\sum_{p \in P \mid B \in B}}{p \in P \mid B \in B}} (N^{i}A)_{p,B} (N^{j}A)_{p,B} = \frac{\sum_{p \in P}}{p \in P} (N^{i}A \mid N^{j}A)^{T})_{p,p} = t_{i+j+1},$$

$$h_{i,j} = h_{i,j} - \sum_{p \in P \mid B \in B}} (N^{i}A)_{p,B} = \frac{\sum_{p \in P}}{p \in P} (N^{i}A \mid N^{j}A)^{T})_{p,p} = t_{i+j+1},$$

$$h_{i,m+1} = h_{m+1,i} = \frac{\sum_{p,B}}{p,B} (N^{i}A)_{p,B} = J_{i,v} N^{i}A J_{b,1} = \alpha^{i}\sigma$$
,

 $h_{m+1,m+1} = vb.$

Using that \mathbf{G}_{m} and \mathbf{H}_{m} are Gram-matrices we obtain from (1) and (2) the following inequalities.

- (3) det $\boldsymbol{G}_{m} \geqslant \boldsymbol{0},$ with equality iff $\text{Pr}(\boldsymbol{D}) \leqslant m$,
- (4) det $H_m \geqslant 0$, with equality iff $R(D) \leqslant m$.

In (3) and (4) we may replace $\mathbf{G}_{\mathbf{m}}$ and $\mathbf{H}_{\mathbf{m}}$ by

(5)
$$\bar{G}_{m} = (t_{i+j} - \alpha^{i+j})_{\substack{i,j=0,\ldots,m \\ i+j=2}}$$
 and

(6)
$$\bar{H}_{m} = (t_{1+j+1} - \alpha^{1+j} \frac{\sigma^{2}}{vb})_{1,j=0,...,m}$$
 respectively, since

- (7) det $G_m = v^2 \det \bar{G}_m$,
- (8) det $H_m = vb \det \bar{H}_m$,

which is easily seen using the transformations

$$\bar{g}_{ij} = g_{ij} - \alpha^i v^{-1} g_{m+1,j}$$
 and

 $\bar{h}_{ij} = h_{ij} - \frac{i\sigma}{vb} h_{m+1,j} , \text{ where } 0 \le i \le m, \ 0 \le j \le m+1.$ Hence we obtain from (3,4,7,8)

THEOREM 4.6: Let D be a $PSI(\alpha)$, m a nonnegative integer. Then

(9) $\det \hat{G}_{m} \ge 0$, with equality iff $Pr(D) \le m$,

(10) det $\bar{H}_{m} > 0$, with equality iff $R(D) \le m$.

As an example we discuss inequality (9) for m = 1. Then we get

COROLLARY 4.7: Let D be a $PSI(\alpha)$. Then

$$t_2 \ge (\sigma - \alpha)^2 (v-1)^{-1} + \alpha^2$$
,

with equality iff D is an (r,λ) -design.

PROOF: $\bar{G}_1 = \begin{pmatrix} v-1 & \sigma-\alpha \\ \sigma-\alpha & t_2-\alpha^2 \end{pmatrix}$ and by (1.1.) and the example in 4.3 we obtain

 $Pr(D) \le 1$ iff Pr(D)=1 iff D is an (r,λ) -design.

. Using the number c_2 of proper two-gons (p,B,q,C,p) p#q, B#C we get

COROLLARY 4.8: Let D be a $PSI(\alpha,r)$. Then

$$c_2 \ge (v-1)^{-1} v (\alpha - r) (\alpha - r - v + 1)$$
,

with equality iff D is an (r,λ) -design.

From Corollary 4.8 we may derive again the FISHER-inequality for 2-designs, the inequality 3.2 for partial geometric designs and the inequality for partial 1-designs $D: v-1 \ge r(k-1)$, with equality iff D is a 2-(v,k,1)-design.

The following theorem sharpens corollary 4.7.

THEOREM 4.9: Let D be a $PSI(\alpha)$. Then

$$t_2 \ge (v-1)^{-1} (v\alpha^2 - 2\alpha\sigma + v \sum_{p \in P} [p]^2) \ge (\sigma - \alpha)^2 (v-1)^{-1} + \alpha^2,$$

the first equality holds iff D is an (r,λ) -design,

the second equality holds iff D is a $PSI(\alpha,r)$.

PROOF: From $t_2 = \frac{\sum_{p \in P} (w(p) + [p]^2)}{p \in P}$ and Thm. 2.3. we obtain the first inequality.

The second inequality is equivalent to the variance-inequality (compare Thm. 2.1.)

$$\sum_{p \in P} \frac{1}{[p]^2} \geqslant \sigma^2 \ v^{-1} \text{ with equality iff } [p] = \sigma \ v^{-1} \text{ for all points } p.$$

5. BOUNDS FOR THE CONNECTION NUMBERS OF REGULAR POINT STABLE DESIGNS

The following theorem generalizes and improves the inequalities of AGRAWAL [1,2] for the intersection numbers [B,C] of different blocks B,C of a 1-design. The AGRAWAL-inequalities contain the SHAH-inequalities for PBIBD's [11], and the CONNOR-MAJUMDAR-inequalities for 2-designs [5,7].

THEOREM 5.1: Let D be a connected $PSI(\alpha,r)$,

specN = {
$$\alpha$$
, ρ_1 ,..., ρ_m } , $\alpha > \rho_1 > ... > \rho_m$.

Then for any two different points p,q we have

max
$$\{2r - b, r - \rho_{\uparrow}, 2(\alpha - \rho_{m})v^{-1} + \rho_{m} - r\} \leq [p,q] \leq$$

min {r -
$$\rho_m$$
, 2(α - ρ_1) v^{-1} + ρ_1 - r}.

The proof will be given elsewhere.

COROLLARY 5.2: (AGRAWAL [1,2]): Let D be a connected 1-(v,k,r)-design,

specN = {rk,
$$\rho_1, \dots, \rho_m$$
} , rk $> \rho_1 > \dots > \rho_m$

Then for any two different blocks B,C we have

max
$$\{2k - v, k - \rho_1, 2rkb^{-1} - k\} \le [B,C] \le$$

min
$$\{k, 2(rk - \rho_1)b^{-1} + \rho_1 - k\}.$$

REMARK: It is easily seen that the application of Thm. 5.1. to the dual of the 1-design D in Cor. 5.2. yields exactly the AGRAWAL-bounds if $\det(A^TA) = 0$, where A is the incidence matrix of D, while otherwise both bounds

$$2\text{rkb}^{-1} - \text{k} \leq [\text{B,C}] \leq \text{k}$$
 are improved by Thm. 5.1.

14.

BIBLIOGRAPHY

- H.L. Agrawal, On the bounds of the number of common treatments between blocks of certain two associate designs, Cal. Statist. Assoc. Bull., . 13 (1964), 76-79.
- H.L. Agrawal, Comparison of the bounds of the number of common treatments between blocks of certain partially balanced incomplete block designs, Ann. Math. Stat., 37 (1966), 739-740.
- R.C. Bose, W.G. Bridges and M.S. Shrikhande, A characterization of partial geometric designs, Discrete Math., 16 (1976), 1-7.
 - R.C. Bose, S.S. Shrikhande, N.M. Singhi, Edge regular multigraphs and partial geometric designs with an application to the embedding of guasiresidual designs, Colloquio Internazionale sulle Teorie Combinatorie, Tomo I, 49-81, Accademia Nazionale dei Lincei, Roma 1976.
- W.S. Connor, Jr., On the structure of balanced incomplete block designs, Ann. Math. Stat., 23 (1952), 57-71.
- 6. H. Hanani, On transversal designs, in "Combinatorics, Part 1", 42-52, Math. Centre Tracts No.55, Math. Centrum, Amsterdam, 1974.
 - K.N. Majumdar, On some theorems in combinatorics relating to incomplete block designs, Ann. Math. Stat., 24 (1953), 377-389.
- 8. D. McCarthy and S.A. Vanstone, On the structure of regular pairwise balanced designs, *Discrete Math.*, 25 (1979), 237-244. R.C. Mullin and S.A. Vanstone, On regular pairwise balanced designs of order
- 9. 6 and index 1, Util. Math., 8 (1975), 349-369. 10.
 - A. Neumaier, $t = \frac{1}{\pi}$ designs, J. Comb. Th., A28 (1980), 226-248.
- 11. S.M. Shah, Bounds for the number of common treatments between any two blocks of certain PBIB designs, Ann. Math. Stat., 36 (1965), 337-342.
- 12. K.E. Wolff, Punkt-stabile und semi-partial-geometrische Inzidenzstrukturen, Mitt. Math. Sem. Giessen, 135 (1978), I-96.
- 13. K.E. Wolff, Rank classification of point stable designs, (to appear).
 - K.E. Wolff, Point stable designs, Finite Geometries and Designs, London Math. Soc. Lecture Notes 49 (1981), 365-369, Cambridge Univ. Press.
- 15. K.E. Wolff, Strong point stable designs, Geometries and Groups, Proceedings Berlin 1981.

Institut für Angewandte Mathematik der Universität Freiburg Hermann-Herder-Str. 10 0 7800 Freiburg Federal Republic of Germany

Hein-Heckroth-Str. 27 D 6300 Giessen Federal Republic of Germany