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INEQUALITIES FOR POINT STABLE DESIGNS

A. Neumaier and K.E. Wolff"

ABSTRACT
A design with incidence matrix A is called point stable if ARTS = ad for
some integer «, where J is the all-one-matrix. We derive inegualities for point
stéb]é designs generalizing the MULLIN-VANSTONE-inequaliity fer (r,i)-designs, the
FI$HER-{nequa1ity for 2-designs, the HAMANI-inequality for transversal designs,
an iriequality for partial geometric designs and the CONNOR-MAJUMDAR-SHAH-AGRAWAL-

inequalities for the intersection numbers of 1-designs.

1. NOTATIONS

A design {or incidence structure) D = (P,B,I) with {vxb)-incidence matrix
A (v - |Pl,b=|8]) is called point stable it NJ = N, where N = AT and J is the
all-one-matrix. D is point stable iff NJ = «J for some integer o. Then D is
called a PSIfa), and a P§Ifa,r) if furthermore AJ = rd. A désign D is a PSI{a}

iff Z:: [B] = ¢ for all points p, where {B) denotes the number of points on the
pIB
block B and « is the maximal eigenvalue of N and its multiplicity equals the num-

ber of connected companents of D.
EXAMPLES: Any 1-{v,k,r}~design is a PSI(rk), any (r,ix}-design is a PSI{r+r{v-1}).
In the following we always require the nondegeneracy conditions

(1.1} 2= [pl<b, 2<[B]<v for all points p and blocks B, where [p] is the
number of blocks through p. Then o < o, where o = [I| = trace N (cf. [12]).
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2. SOME BASIC INEQUALITIES

First we mention twe variance ineqgualities.

I

THEOREM 2.1 [12]: Let D be @ PSI{a). fThen

or2
;_
RV

witk_equaiity'ifj‘[B] = %—fbr all blocks B,

2 2
g g
b

= Vo -

pROF: 0 <) _ (81 - %=1 g2 -
U ke BB

REMARK: If B is a 1-{v,k,r}-design, then Thm.2.1. yields the first FISHER-equation
vr =bk.

- -Since an (r,3}-design is a PSI{r+a{v-1}) with o = vr we obtain

COROLLARY 2.2 (MULLIN-VANSTONE [91}: Let D be an (r,)-design. Then

2
vr

r+a{v-1)

with equality ©ff D iz a 2-design.

REMARK: McCARTHY, VANSTONE (8] obtained this inequality from a determinantal con-

dition on CONNOR's characteristic matrix.

For any point p let w(p) = ) [p,qﬂz, i.e. the number of paths
=R {p}

(psB,q.C.p} with q # p.

THEOREM 2.3: Le# D be a PSI{a). Then

wip) > (V'])-1(U - |Dl)2 for all points p,
with equality Tff (p.ql = (v-]}"1(a - [pl) for all g#p.

PROOF: 0 <) __{lp.q] - (V-])_](a -[p]))2 = wip) - (v-UhT(a - [p])2
g=R {p}

COROLLARY 2.4: Zet D ke a PSI{a.r). Phen
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w(p) = (V-1)-?(a - r)z for all points p,

with equality iff D ¢ an (r,3)-design with A = (v-])_1(a -r}.

1

REMARK: Note that a = (V-])-](a -r) yields the second FISHER-equation
AMy=1) = r(k-1) for 2-(v,k,A)-designs,

3. AN EIGENVALUE INEQUALITY

- The following inequality generalizes inequalities for semi partial geometric

desfgns-[12] and partial geometric designs [ 10].

THEO?EMIS.]: Let D be a conmeeted PSI{a), specl) {0} = {ay0ysmeaspyds a> > . >0y
and 'let the'correéponding multiplicities be 1, TyserasToe Then
o - o - D]T-I" s = Dm_ITm_.I

=
T -t

-1
with equality ZfF detN > Q.

m m
PROOF: Clearly ¢ = o + Z PyTs and 1 + E g =¥
i=1 i=1

with equality iff 0 € spaecN.

COROLLARY 3.2 [12]: Let D be a comected PSI{a) with speci\ {0} = (u,p} > a>q,

then
g - u

} a
LSRRV

with equality ¢ff D is an (r,1)-design.

PROOF: A connected point stable design is an {r,2)-design iff |spech| = 2 (cf.
[121}.

A partial geometric design is a 1-design satisfying NA - oA = tJ for some
pst € R {in fact p,t are positive integers). BOSE, 8RIDGES, SHRIKHANDE [3]
proved that a connected T-design is partial geometric iff |spechh (0}] = 2.

Now application of Corollary 3.2 and -some elementary calculations show
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COROLLARY 3.3 [10]: Zet D be a partial geomatrie 1-(V,k,r)-deaign and NA - ph= 1,
" then
‘ t = k(r -p),

with equality iff D s a 2-design.

REMARK: Since the dual of a partial geometric design is partial geometric {with
.éhe:same:p,t), also the dual inequality t > r(k - p) holds, with equality iff the
duai of D is a 2-design. Therefrom one may derive (cf. [101)
}(i):_the'FISHERfinequa1ity b = v for 2-(v,k,A)-designs, with equality iff D is a
© ' symmetric 2-design,
(ii) the HANANI-ineguality [6] k < (kuz - 1Hu -1}“1 for transversal designs

' Tka,A,uL fu > 1), with equality iff the dual of D is a 2-design {and hence

an affine design).

4. DETERMINANT FORMULAE

Let D be a design and m a nonnegative integer.

4.1 The m2 {v=v)-matrices NO,N1,N2,...,Nm,J are dependent {in sz'v) iff
there is a real monic polynomial T{X) of degree sf(X) < m such that f{N} = tJ for
some real t.

2

4.2 The m2 {vxb}-matrices A, NA, NA,..., NmA, J are dependent {in rRYY

)
iFf there is a real monic polynomial (X} of degree sf(X) <m such that F{N)A = &J

for some real t.

DEFINITION 4.3 [13]: The point rank Pr(D) (resp. the rank R(D)) is the minimal
degree of a real monic polynomial F(X) such that f(N) = tJ {resp. FN)A = td) for

some real t.

EXAMPLES: (i) Pr(D)} = 1 iff D is an (r.A)-design.

{i1) Supposed that D is point stable. Then R(D) = 1 iff D is partial
geometric (cf. [131). From (4.1..4.2.) it is-easy to see that
(1) ¥, N',..., N", J are dependent iff Pr(D) < m,

(2) &, NA, ...,N"A, J are dependent 1ff R(D} <m.
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Now let D be a PSI{«) and tS be the trace of N° {s a nonnegative integer),

hence

o 3 s y .
té = {N_)p p is the number of closed paths of length s. Then the Grammatrices

- pEP . !

PP | m :

= ' BN = (g ),

Gm GramLN N N7.d) (913)1‘3 =0, and
o : - m _

Hmu Gr‘am(ﬁ,NA,....,N Ad) = (hij)i,j TS

of the vectors NO,...,Nm, Je r"Y (resp. A,NA,...,.N"a,0 me) have the foilow-
ing eftries: For 0 < §,j =m

A m")p' MU T N UL P S

i D .qEF P.q - p.p i+j
- i i i
g, =g .= (N), =dy NI - =ay,
1?m+T CTmET LT p.qEP P.q v w,l
o .
Il me1 =
' ' ) iy gl T
hij ) {N‘A}p B(NJA) - ) AR )p.p " Hagn o
PEP BEB > > =24
hn,m+1 hm+1,1 %;;; (N'A) LB J1,v A Jb,l &9
hm+1,m+] = vb.

Using that Gm and Hm are Gram-matrices we obtain from {1) and (2) the following
inequalities,

{3) det Gm =0, with equality iff Pr(D) < m ,

{4) det Hm; 0, with equality iff R(D} <m .

In (3) and (4) we may replace Gm'and Hm by

(5) ém B (ti+j ) ai+j)i,j=0,....m and

(6) Hm = (ti+j+1 AN %E 5,40,....m respectively, since
(7) det G, = ¥ det §_,

(8) det K = vb det i,

which is easily seen using the transformations

g.. = - v-] and
943 7 945 Sme1, 3
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5
h..=h,, -L%h .o, where D=4 <€m, 0<j <ml.
iJ id vb  m+1,]

~Hence we obtain from {3,4,7,8)

THEOREM 4.6: Lei D be « PSI{a}, m a nomnegative integer. Then
(9) det & >0, with equality iff Pr{D) <m ,
(10} det Hm_; 0, with equality <FFf R(D) <m .

_'ﬂsﬁan ekamp1e we discuss inequality (9) for m = 1. Then we get

‘COROLLARY 4.7: Zet D be a PSI(a}. Then

2

t, » (o - a)z(v-])-1 o,

2

‘with equality iff D is an (r,))-design.

" PROOF: v-1 o :
Gy = rJ(‘2 and by (1.1.) and the example in 4.3 we obtain

o-o t,~

2
PriD) < 1 iff Pr{D)=1 1ff D is an (r,i}-design.

Using the number ¢y of proper two-gons (p,B,q,C,p) p#q. BT we get

COROLLARY 4.8: Let D be a PSI{u,r). TFhen

¢, (\;'—1}_1 vie-r){e-r-v+1},

with equality <ff D is an {r,\}-design.

From Corollary 4.8 we may derive again the FISHER-inequality for 2-designs,
the inequality 3.2 for partial geometric designs and the inequality for partial
1-designs D : v-1 ® r{k-1), with equality iff D is a 2-(v,k,1)-design.

The following theorem sharpens corollary 4.7.

THEOREM 4.9: Let D be g PSI{u). uhen

‘t2 = (V-])-] {Vuz - 2a0 + ¥ Z {p]z) > {o - Q)Z(V_”-'I + 32’
peP :

the firet equality holds iff D €8 an {r,\)-decign,
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the second equality holds iff D is a PSI{o,r).

PROOF: From t, = Z:: (wip) + {p]z) and Thm. 2.3. we obtain the first inequality.
- _ oep
The second inequality is equivalent to the variance-inequality {compare Thm, 2.1.)

Z:: [’p]2 ?'02 v_] with equality iff [pi=o¢ al for all points p.
pEP

5. BOUNBS FOR THE CONNECTION WUMBERS OF REGULAR POINT STABLE DESIGNS

jheffdl]dwing theorem generalizes and improves the inequalities of AGRAWAL

[1;2] For'the intersection numbers [B,C) of different blocks B,C of a 1-design.
The AGRBMAL-inequalities contain the SHAH-inequalities for PBIBD's [11], and the
CONNOR-MAJUMDAR-inequalities for 2-designs [5,7].

THEOREM 5.1: Iet D be a connected S1(a,r),
specN = {«, Pyscees pm]- s o >pl>...> Py’

Then for amy twe diffevent points p,q we have

max {2r - b, r - Pys 2{c - p }\r_1 + Py r} < fp,q] <

m

min gr <o, 2a - o v 4oy - r).

1

The proof will be given elsewhere.

COROLLARY 5.2: (AGRAWAL [1,2]): Let D be a connected 1-{v,k,r)-design,

specN = {rk, Pparees pm} , k> Py >...3>pm.
Then for any two different blocks B,C we have

max {2k - v, k - p1s Zrkb—] -k} =[B,01=

min fk, 2(rk - (:;])b-I + py -kl

REMARK: It is easily seen that the application of Thm. 5.1. to the dual of the 1-
design D in Cor. 5.2. yields exactly the AGRAWAL-bounds if det(ATA) = 0, where A
is the incidence matrix of D, while otherwise beth bounds

2rkn”) - K = [B,C] < k are improved by Thm. 5.1,
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