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Abstract. A family of multivariate rational functions is constructed. It has strong local
minimizers with prescribed function values at prescribed positions. While there might be
additional local minima, such minima cannot be global. A second family of multivariate
rational functions is given, having prescribed global minimizers and prescribed interpolat-
ing data.
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1 Introduction

Testing global optimization algorithms is a nontrivial task, since many of
the well-known test functions (for example, those in the classical test set by
DixoN & SzEGO [4]) are nowadays quite simplistic, and the global minima
of more difficult functions are often not known.

Therefore it is desirable to have test functions that attain their global min-
imum at one or more predefined points, and that can be adjusted to match
various difficulties, such as the existence of many local minimizers, ill-condi-
tioned Hessian matrices at the optimizers (resulting in curved, narrow val-
leys), local minima close to a global one, narrow and deep holes, etc..

In this note, it is shown that this can be indeed achieved by two simple classes
of rational functions in arbitrary dimensions.

In the following, || - || = V2T denotes the Euclidean norm of a vector .
2 Prescribed global and local minimizers

2.1 Theorem. Let zq,...,x,, € R* be distinct, let fi,..., f,, € R, and
let Ry, ..., R, € R"™™" be triangular matrices with positive diagonal entries.



Then the function
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fi if x = x, for some k,
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where
ri(z) = || Ri(2 — zp)|)” (2)
is infinitely often differentiable, and has strong local minimizers at x = wy,
with function values f(xy) = fr and Hessian matrices f"(xy) = RE Ry.

Moreover, the global minimizers of f are precisely the points xy with f; =

min{ fi,..., fm}-

Proof. In a sufficiently small neighbourhood of x; we have

re(zp + 8) = || Rps||* = STRngS = O(]|s]]*).

Therefore
flar+s) = (2f’“7g L 0(1))/(% +o())
= (2fx + e+ O(Isl|")/ 2+ O([[s]I*)),
giving

Flae+8) = it 5" R Rs + O(s]l). g

This implies that

limf(xz, +s) = f,

s—0
providing continuity of f. Since f is rational for x ¢ {x1,..., 2} and the
denominators vanish only on this set, we see that f has no real poles and is
therefore infinitely often differentiable. Comparison of (3) with the Taylor
expansion shows that f’(zx) = 0 and f"(zz) = Rj Ry is positive definite
(since Ry is nonsingular). Therefore zy is a strong local minimizer of f.

Now let fo = mkinfk. Then, for ¢ {z1,...,Zm},

> @(fk = fo) +re) /7
fl@)—fo=-L > 0.
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On the other hand,

Therefore the global minimizers of f are precisely the x with fx, = fo.

2.2 Example. To illustrate the flexibility of the construction we show in
Figure 1 some univariate rational functions created with z; = 0, f; = 0,
xe =1, fo = 1 and various values for r = R; and s = Ry,. We see (first two
graphs) that there may be additional, undesigned local minima, and that
sometimes a nonglobal designed minimum is hardly visible since it is only a
small dip in a larger peak. As predicted by the theorem, the global minimizer

is always at = 0.

Figure 1: Rational functions with designed minima at (x, f) = (0,0) and

(1,1).
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2.3 Remarks. (i) f may have additional local minimizers but, by the the-

orem, these cannot be global.



(ii) Far away from all points, f(x) grows like ||z]|* in the sense that f(z)/||z]|?
remains bounded.

(iii) An arbitrary positive definite Hessian matrix G can be written in the
form G = RTR with a triangular matrix with positive diagonal entries. This
is achieved by means of a Cholesky factorization. Therefore the theory al-
lows to prescribe the full quadratic Taylor approximation of arbitrary local
minimizers.

(iv) For use as a test problem generator, we suggest that the function values
fr and the triangular matrices Ry are generated randomly. To get multiple
global minima one simply replaces the smallest few f; by fo = mkin fr. To get

deep and narrow holes, multiply the corresponding R; by a moderately large
number. To get curved, narrow valleys, replace some diagonal entries of Ry
by moderately small numbers. The positions of the local minimizers may
be placed according to geometric patterns, or randomly. One can also place
some minimizers much closer than the others. For test problems reported in
publications, it is better to use xj, fr, Ry rounded to simple values that can
be explicitly given in a table (or in a file retrievable from the WWW).

In the most useful special case m = 2, the function (1) takes the form

ra(@)*(2f1 + r1(x)) + 11 (2)*(2f2 + ra(2))

2 @? + ra(@P) @)

flz) =

For example, for fi; = fo = 0,21 = u,29 = v # u, Ry = Ry = I, (4) reduces

to
Mz = ulPlle = o]l = ull* + |z = v[]?)

flz) = : (5)

2(llz = ul[* + [lz = v[[*)

This function is always nonnegative, has precisely two global minimizers at
r = wu and x = v, and satisfies

1 . 1
5 min(llz —ulf®, e = ") < f(2) < 5 max(||lz = ull”, [lz —o]]*).

A similar, somewhat simpler function with the same properties is

lz = ull* [lz = v|*
(= ul* + llz = v[*)

fla) =5



3 Prescribed global minimizers and interpo-
lation data

TORN & ZILINSKAS [11] proved that any method based on local information
only that converges for every continuous f to a global minimizer of f in
a feasible domain C' must produce a sequence of points z', 22, ... that is
dense in C. In particular, global optimization with function values only is
an intrinsically ill-posed problem since without global information it is easy
to miss minimizers lying in deep and narrow holes.

The following construction makes this explicit and provides further test prob-
lems, interpolating given data at a finite set of points but with arbitrarily
positioned global minimizers.

3.1 Theorem. Given N pairs (z1, f1),...,(zn, fv) € R* X R, m points

Z1,...,2m € R*, anumber f € R with f < min f;, and m triangular matrices
j
Ry, ..., R, € R"" with positive diagonal entries, let
f@) = f +p(x)*q(2), (7)

[T 1Rk (x = 20)I1”

2(1+ [|B(z)]l*)
with arbitrary B(x), and p(z) is a function interpolating the following data:

q(z) =

A T+ 1BGn?
() = (k=1,...,m)
! TR — 2l
12k
N fi—f _

Then f interpolates the given data,

f(.’L'j):fj (_]Zl,N),

and has the global minimizers Zr(k =1,...,m) with global minimum value
f and Hessians f"(%)) = RI Ry.



Proof. The interpolation condition follows from f(x;) = f+p(x;)%q(x;) = f;.
Since ¢(x) > 0 with equality iff x = 2y for some k, (7) implies that f(x) has
global minimizers (at least) at the ;. To calculate the Hessians at these
points, we note that the form of ¢(z) implies that ¢(&x) = 0, ¢'(Zx) = 0, and

[TI1R:(& — 212

"y oa I#k T
q () = — R R,
@) =T BGgE T

since all other contributions to ¢”(z) vanish at x = #. Since all terms

contributing to the Hessian f” except p?q” contain a factor ¢ or ¢/, we have

(%) = p(2£)°¢" (2x) = R} Ry..

The theorem again illustrates the importance of global information, such as
Lipschitz constants (e.g., PINTER [8]), curvature bounds (e.g., BRENT [2]),
interval extensions (e.g., KEARFOTT [5], NEUMAIER [6]) or explicit access
to the analytical structure (Ryoo & SAHINIDIS [9], NEUMAIER et al. [7],
ADJIMAN et al. [1]) for reliable global optimization.

3.2 Example. We use B(z) = 0, and take p(x) as the arbitrarily often
differentiable Shepard interpolation function (SHEPARD [10])

p(2) if x = z; for some I,
p(l') = m+N m+N

3 pla)lz - zl||_2/ S lle =zl otherwise,

=1 I=1

where z; = Z; for | < m and 2, = x;_,, for [ > m. Figure 2 contains level
sets of a 2-dimensional example with R; = Ry, = I, interpolation points
(}), (fl), (_11), (j), corresponding function values 0,1, 0,1, and global mini-
mum f — 1 designed at ((1)) and (_01).
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Figure 2: A rational function with designed global minima at (0) and (°),
and given values at (i})

2

o
T
1

-2
-2 -1 0 1 2

References

[1] C.S. Adjiman, S. Dallwig, C.A. Floudas and A. Neumaier, A global opti-
mization method, alphaBB, for general twice-differentiable constrained
NLPs — I. Theoretical advances, Computers and Chemical Engineering
22 (1998), 1137-1158.

[2] R.P. Brent, Algorithms for Minimization Without Derivatives, Prentice-
Hall, Englewood Cliffs, New Jersey, 1973.

[3] COCONUT, COntinuous CONstraints — Updating the Technology, an
IST Project funded by the European Union.
http://www.mat.univie.ac.at/~neum/glopt/coconut/index.html

[4] L.C.W. Dixon and G.P. Szeg6, The global optimization problem: an
introduction, pp. 1-15 in: in L.C.W. Dixon and G.P. Szegé (eds.), To-
wards Global Optimisation 2, North-Holland, Amsterdam 1978.

7



[5] R.B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer,
Dordrecht 1996.

[6] A. Neumaier, Interval Methods for Systems of Equations, Cambridge
Univ. Press, Cambridge 1990.

[7] A. Neumaier, S. Dallwig and H. Schichl, GLOPT - a program for con-
strained global optimization, pp. 19-36 in: I. Bomze et al., eds., Devel-
opments in Global Optimization, Kluwer, Dordrecht 1997.

[8] J.D. Pinter, Global Optimization in Action: Continuous and Lipschitz
Optimization, Kluwer, Dordrecht 1996.

[9] H.S. Ryoo and N.V. Sahinidis, A branch-and-reduce approach to global
optimization, J. Global Optimization 8 (1996), 107-139.

[10] D. Shepard, A two-dimensional interpolation function for irregular
spaced data, Proc. ACM Nat. Conf. (1965), 517-524,

[11] A. T6rn and A. Zilinskas, Global Optimization, Lecture Notes in Com-
puter Science, Vol. 350, Springer, Berlin 1989.



