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Inm this paper we thall constder a covering method for the enclosure of
tha solutien set of 3 fiplte-dimensianal system of nanlinear equations
-~

2] =1,

whete F is @ function defined on o subsiet P C u: with valuas in K7,

11,11 Fi

min, IF F is regylar te 8, t.6, 17 f 45 conbtinuously difforentiable and

rank m for all ® in & peiphbourhood of the salulion set

MW= [Tep | FI¥I=0],

then the solution set M of |1] is A p-dimensionul manifold in B",
pan=&. [f F i5 regular then, in the degunerate case p=0 {i.e2. a=m)], the
eguation |L.1) has only finately many solutioms,. In case p>0, tha wvec-

saw sl
i g
called parametérs, and the selution or solutions of {1) are sought im

J.....hn.

terms of Hu...._pn. In that case i1t may be more convenient to seaparate
Lhe tndependent vartables and the parameters, amd wreibe [1,1] as

"

tor ¥ of varrables often contains p distinguishod variasbles 1

dopandence on i corrgsponding ko a parametriration of H in

[1.2} Fla, 11 = m,
whote now F: @ & e L L

The standard method for the solution of [0.11 for [(9.21] is the

pontynuptaon method, developed primarily for the case p = 1. Here, in
Ehe regular case; the selwtion set M consists of & union of disjaint
cubwet, and the continuatlon method essentially cansists in starting at
@ particulay solutien ¥° and approximately follawing the solutian

curve cantaining 7 Lnoone ur botn af the bw possible directions. A
nesghbuourleg solubtlon point 2:s obtained by approzimately lingacizing
$1.1) arad sulving the reswlting eguatlen, while taking care that the

Limgarigatoon error remains small. Certalm vartatlons which use

by the variable last) equals the sumber of nested Bisections used to
craate the current bex, it follows that a3 stack size of Ofn log n-__ 1%
sufficient to store all intermediate boxwes, A more detalled count Shaws
that in fact a stack with
n qﬁnuv
bmpax = 1 « T pnnm e
i=1 t

boxes 1 enougph, For small g, this worst cose bound 18 rarely achiewvad,

n_hﬁu is & more ressonable choitce.

and nften bhmax = _+_=+_|3u.panunﬂ_a

In this section we consider the homagenvows linear interval equateon

13.11 ki =0, Kea, ¥ER,
LN

whete AEX and xE ; min, |This covers the problem [?.9] with d ip
place of x and n+l 1n place of nl. We are interested 1n interval enclo-
sures of the splutian rrﬂ of (3,11, defined as

[3.21 E s i¥ex | A¥20 for some AEA),
and in particular an conditions whicoh guarantes Ehat (1.1 is5 incon=
sistent, i.e, I=P0. By a result of Beeck [1], the solution set has the
simplar characterization

(3.3 I = {¥ex | DEA¥}.
In general, [ has & voery complicated shape, and the smallest znterval
pnclosure xaﬂn m 0T seeds to be very difficult to find. Even the deci-
sian whether I=P or not seems to roquere exponentially many eperations,
Mowever, i1f the enkries of » have constant sign then [ 3% & convesx
polyhedron bn B" |Boack [3}1, and im this easo,. our praoblem can be
wiowad a5 a multi-objective lineoar programming prablem. We s|iow this
for the case x20. Here A% = [A7.A¥] whence

(3.4 L= [%eR™ | weicn, AFS0€AR} [1F x20)
iv defined by linear inegualities. Therefore standard linecar programm-
Lng technlques can he gsad to dacide wnether I=8, and Lf Ehis La not
the case, the @n problems

mLnLmLze u,.., subject to REL



piecawise-linear approximations of (10} are also known as aimplicial
methods. The case p»1 ia reduced to pel by tracing particular solution
cur¥es an M, and the case p=D is breated by embedding the solution of
(1.1} anta a 1-dipensional manifold by introducing anm artificial paras
by The details af the mothod

meter (homofopy or faixed point m il

change from author to authar. See a8,g9. Schwetlick [22], Zanpgwill ana
Garcia [25F, Rheinbolet [20] and the survey paper [21] of Rhoinkaoldt in

these proceedlngd.

Clearly, to find all solutions of [1.1) with a continuation methed, one
needs bo know at Least one point on each connected component of M.
While in some cases this is easy Lo achigve, in others 2t 15 more dif-
Ficult, and in certain problems of practical interest even the numbar
of compunants of W 15 unknown (Ushida and Chea [24]1). Fer the unrelia-
bilikty af homotapy mothods [and related deflation methaodi) fTor fFinding
all tolublions in case p=0, cf, Allgower and Georg L2 (in particular

Evample 111

Interval methads far the solutlod af [(1,1] sare besed on a different,
plobal approdch. A% 1s natural in applications, it is asdumed that only
that parl of W 1% interesting for which all wvariables lie within
cartain baunds,

pH F w+ Cuy 1= 1.0,
80 that only the solutions of (1) contalned tn a box xnqu.:_mun: ara
tought, Let us writeé, for any well Ithe set of interval boxes contained
in b,

CiF, w1 4= §¥ex | FITI=0]

Thig ng_method to be discussed in this paper consisls in cowvering

[

the set [iF, x"| by 2 collection of smaller and smallor boxes which giwe
increasingly accurate infarmatien about the location of the salution
s#l. At the most refinad stage, the covering computed for the solutions
fet Oescribies the solulion set as accurately as required for represant-
Lng it as an imuge onh 3 camputer screen. And indead, [ was inspived to
Lhe presonted investigations partly by recant applications of interval
arithmetaic Lo tomputer-aided gesmulric design [CAGHI: see Medur and

Koparkar (7,130, Toth [23)

=11=

detormine the lower and upper bounds of the companents of pnu+. Wow-
ayer, 4 rigorous treatment in the presence of rounding €rrors L5 more

complicated {cf. Krawczyk [8]. Junssoan [EJ), and we have not wsed Lhis

approach.

Thus, we content ourselves with sufficient concditions for [=8, and far
loss Lhan optimal interval enclosures of [, & sieple tost can be

obtasned by looking at each componant separately. From {2.1} we find

n n
o= EW.¥ & Oaix
51 k" u i ik k
and
F W == Bloay &= B e
131 REd kK i L*k

Using again the ternary operator [ defined in (1.3}, we get the

Lmproved enclesure

13,61 H - -
3BT Ty g & LT TS LI LR RN ) B
k%3
Te reduce the work noeded to compute (1.6] we write
n
Pooa= A, %o, 5 Ca 3 4= Lohook =8 ap.,
kR’
] 131°2 " k11 1 k=i Lk Jor
For all 3, wg then hava mumu.mh. unmu.uu_ hance
-8 = [-E -« = [Du<B.py-
g = bosgaes] = [pg-s.py-510

Therefore the improved enclosure [3.6) cam be computed for fized 1 in
0in}) wparations by the program pilece

goayd ;= brde; § ;= 0

Foer J = 1 to w do

begin pl3l = ALe 31 % [3]; & 1= sepls] end:

good =0 in &/

1F good then For § :2 1 Lo n de

begin mipugs, aaf = pljd gup -¢ 5. 50p/
ninuss.sap = plpd, enf -3 &, 0nf;

gamoma (AL, 7]l.menuss,x{; ). go0d] end,

uea which sels good = Falsp

where gamma la.box good) denotes & proc
if Mla, b, %} = 8, and othorwise averwritas = by Mla,b,a). Clesrly, we

can wsa each wquation is Lurn far a repeated amprovement of the bosx
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3 frme covering for Lhe curve

ep Evample 3 1n §41.
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Bacause of the analogy with Ethe classical Gauss-Seidel iteration method

for linear equations we call this improvement method the
and refar to geing with [J.61 throuagh each
efuation once as one fwoep of the method. Applied directly ta {(3_113,
the generalired Gausi-Seldel method Ls wiwally nob very efficient, bot
the performance can improve drastically whien bthe lineat system (3,10 is
precenditioned by multiplyang it on the left with & real meom-matrlx O,
This yirelds the system

13.7) % won, Fackeca, wex,
and the generulized Gauss-Seidel method ts sdw dpplied to |3,7), &.@,
with CA 1n place of A. As yel we have no conclusiwve results about the
best choice of €, but in apalogy with the case of ‘square inhomogeneous
linear interval equattons {surveyved in Heumsier [151), it seems plawsi-
d of m

blp to take € as an Approximate Lnverse of a maktris B compo
linearky Lodependent columins of zome mabkrix Eea. Tn BUF PTORTAM Wit
chose c=B"', using row pivpting to select B, and Lhen porformed bwo

swagps of bhe penaralized Gauss-Seidel method to improve the bos.

Wa end this section by explaining why the homogensousl approsch has an
advantage over the tnhaomogeneous formulation., Consider the sguare
inhomogenoaous systom

1383 iz = &, Hep, Beb. Fex.

whare mm-na.a. :.nm—na and the related homogeneous sysbem
F
1

To make the point, consider tho special case of (J.87 wh

(3.3} I =0, Kea i= 1B,-bl, ¥ear={7),

re B oand b oarse

Lhin, B 15 singular of rank m=1, and the systom 1s incemsistent, .o,
var (3.8

ral, the situatian 35 similar wihr

[B,-B] has rank m. LIn g

i inconcistent and B is stngular or (ll-condiltioned.| Then &
dard way of salving |13.8) by precondetioning with an approsimsle mid-
point inverse € Lleads {due bo roundof#) Lo 3 matraix © with hugo ole-

mants, and @ll information an (3, 8) 15 lost after mulbiplying by C, On

and of

tho other hand, row pivoling assuros that an L3,
of B 18 replaced by -b, thus léading Ea 3 reasaosble O, and geéngralized
Gausg-Seidel will f{at least in the thim case) almost certainly dretect

the anconsistoncy Ln bha second gweem,




Clearly, the cavering method needs no information about particular
solublons or even the number of solution curves. On the other hand, it
requires @ critorion for testing whather a box xeIB” contains no solu-
biaon of 11.1) [l.e. [IF,x1=0), and thus cam be discarded frem the

el F, il.o., 3

covaring sat. The simplost test wses an interva
mapping from ' £ "« 1™ jalso denoted by F} such that

¥EN 3 FUXIEF(ul:
clearly

GEF{x) = L(F, xl=8.
1§ Lthe intdeval rxtension is 4lso contisuous, se thabt Ln particelar
Fla) = FI5} 17 x = %, thon, for sufficiently small boses, thHis Lest
rrcludes any polnt not on the solution set. Since thers are many ways
to construct continuous interval extensions for functions defined by
arithmetical sxprossions |Moore [E21), this shows the feasibility of
Lhe approach, Howéver, Ln this form bthe method is very siow |cf. Horgan
and Shapirs [111): hence more sophisticated tests are needed te speed
up ‘the process and Lo yisld narrow enclures withoot using too many
bogeds., We discuss the covering method in more detail im Section 2. In
Section 3 we give soms details about the solution of linear intarval
squations, required for & mare refined test for discarding irrelevant

parts of a bok., Sample results for a particular realizatlion of the

covering method are presented Ln Sectlon &

The terminology used in this paper follows Neumaier [14,1%3. 1n parti-

cular, IW and IE" denote the sat of resl closed intarvals, and of in-

slon n, respectively, x m. m. and plz) de-

L

rval yectors of dum

noty the lower bound, upper bound, sigpoint, and redius of #€0R", int
ls Ehie inteériar of um_n:_ and 0% == [inf &, sup 51 |with OS5 =@ &f 5 =@
danotes the interval Hull of & bounded set 5 c —n:. Then intervals
finterval wectors] ere thoso with L= %+ Furthermore, we shall need
the ternadry operator [, dafined far a b,x € IE hy

Fraa Mla e a) Di¥ex | Ti=b for soma ica, Bewl

Péa,b,2) L5 ett interval, or the weepty sel, angd it can be

computed from 1 endpoints af a,b,% as

4, HWumerjcal gxamples.

In this section we report on some calculations done with the MS-005
wersion [1] of PASCAL-5C am an OIivetti H24. [n most cases we list the
number § of boves considerad [for each wos, one Tunction+slope call and
phg lipvar system solve 15 required|, the awmber b of boses Ln Ehe

final covering, the macimal stack size s, and the execution time E.

Example §. Pairs of cubic eguations of the farm

2 s
+ =
_xu.n xy ﬂutdxnﬁupa_.nmam o,

] 2 1 2 ~
ﬂmR_xv.aqa_xm.ﬂmx‘xu.anN'n_mxuvﬂ_Jnmvn_m =1

P4x

arise in combustion chemistey. In the box 5 600010, %,C00.1]. we find
for the coefficlents given in Horgan and Shapiro [111 & single solution
box

nuum.mhﬁmnmunmn_num uﬂ.uMuq_mawwMuucuu.

500 1 R
[{The results da not agees with Lhosit of [11]1, probably due Lo some mis-
print there, ) Wo have £=342, b=1, 5=20, telimi%s when hﬁuu.ﬂmwm. but

tunz hmmg._anaﬂmmu Inmmhnnnu:tpavnﬁﬁznnﬂuuu:unmn#muhau_ﬂal_wrm
answer Ls found much qQuicker [F=59, b=1, s=F4, t=2mdis). This 11lus-
trates Lhi noed bo develop an awtomatic, self-scaling bisceckion

procedure.

. Febot manipulation leads bte systems of A polynomial egui-

tignt th B unkpowns. With Ehe data from Morgan and Shapito (7], we

find 1B solubtions in Lhe amibial box uthn_._u te=1,.,,.8), covared hy

Les for

16 boxes. Me have f=240, bel6, s=0, t=51md5s. Sample coordia

Lhe figst box found;

nnh u.gnbnu_ﬁmmmw_ xgnun.mmrqwapu»ﬁ“h.
5 Gk 13
qm|-=.m___mbﬁmmmu_ 2qk =.mmduu~pmr=m.
Example 3. The t-dimensional manifold defined by
xU:scmquN|x¢|¢m =, el-5,5), wel-1,1]

e 1n Lhe

sglutions, coverid by the set of baaes

ts, for diffarani

introducltion {(Fag,. 1), The covering method corpectly detocts Lhree

Curwes, twd of which intersect. For the highest resolution, §

b=HDE, im3kFs.




bla.n x 1f Dia,

Olx ~ ant [bfa,sfall L Lrd€a,
IR Ma,b,x] =

Olx » 1nt [B/E,Bral) if medca,

® 1f Q€a,.b.

Apart from some compares, tha calculation of Mi{a.b.%) requires at most

phe floating-painl division 10 =30 oF =40, and &L mosl Lwa athérwise.

2. Covpring the soluliom sel

In thid section we discuss the following diagram describing the various
rngredignts of an algorithm for adaptively govering the solution seb
m_m_x=_ af the bound-gonstroined ponlidgar system

[2.1) Flal = 0

whare F: D € "« B, men, ana x"exn,

choose a bax from
Lhe stack

nmﬁﬂﬂw discard irrelevant
parts af Lhe bBox

L

J. bok pmpty? >

enter initial bosx
into skack

box small? &

biseck box

g
Brter halved Loxes
inko stack

_,u_r_n

FEtop IBEapky
Eﬂ._ﬁ_lx_

-

Exampls 4. Ushida and Chus [24] consider the following palr of
squations for a simplé Lupnel diode circuft:
1 z a_ 7, B
1%.11 _._...u.._._ m.a.wc._ 2 .__u.m_.__.N .._._w_,..m =
= ___.._:__u.u.m“_..

+h BBy, =2,5%

4.z} W
in
The covering method for (4.1} correctly detects btwo components CUrves
ane of thom clpsed, apnd the subsequent calculation of ¥in from (4.2
loads to bhe trasnsfer characterlistics shown in Fig,2. For &, 10, we
have f=10%1, b=BB3, telimids, and the transTormatbion |4.7) takes 10
further minutes,

Example §. The polynompal eystem

= uu+¢m. a2 = qm.um

nas as salution set a flgure B curve Lf <1, two touching closed curves
if a=1, and an isolated paint [at zerod plus a closed curve 4F ax1. The
projockion to the s-y plane 15 & so-called hippepode [Lawrence {1011,
For a=t.1 and x€[-1_.51.9), wel-1.,11. zel0.4] we get a covering whose
projection to the x-y plane is shown in Fig.3. [The spurious boxes are
due to the influence of the singularity at zero, and disappear when the

resalutson 1s increased). We havoe £=1712, b=G&1; ==&, t=s5%mils,

Example &. Rheinbolgt [19)] describes a system of 5 polynameal equations
in 8 unknowne __.._. e .-.___m_.: .....r_u arisang in aircraft equilibrium prob-
lems. For w =0.1, ﬁu.n we geloa covering of drawing accuracy with

I
r=1518, b=588, s=1%, L=4hIImi0s

Lhe number af

He note that for curve cowverings [nesmed, Examples 1-6
baxas cohsidered wad less than 1 btimes the number of boxes in the final

@ time raquired for pach box cons:dered 15 Tnughly propor-

COVRIAng .

?

tianal to An°, so thakt Lhe a_:u_.noabpm.Fﬂg inr solving linear systams

1t not yet observed for small n.

Example m n Fi 1
1 2 2 I42.00 0.49%s
? -] B h.0an Q.20
3 1 2 1,29 N_224s
& 1 2 1.16 0.214s
L] ' 1 2.64 0.214%

] 5 & 2.58 0.300s




Rumarks concerning the practical fmplemanbtation ara gaven with
reference 1o kMo propramming language PASCAL-SC |see [1,&)), which was

also wsed to compute the numerical results 1n Saction &,

[1} Ina stsck. Since the order in which the boxes are processed &3 im-

matarial, the list of boses can ba simply stored im & last EIp-fleslt mul
stack. This 15 simply an array stack of boxes, together with an intager
Iast which remembecs bhe last entry of stack wsed ab the prosent stage,

consE nov. = {number of wvarfakles); bmax = (stack siza};

typor kox = arrayil. .nmov] ofF inteerval,

var stack: arrayll.. bmax) of Bug;

ta the stack by

& box x 15 entered |

Tagt = last+1, 1f last £ pmax then stack[last) := x:
and chosen Tra the stack by
tf Tast » 0 Bhen x ;= stack(last); last ;= last-1;

The stack 1% emply if last = 0 and full iFf Jast > bmax: if this happens
the algorithm steps. An emply stack indicates the suecessful completion
of the algarithm; 3 full stack indicates failure due to lack of starage

4l1l1] ar unreaasonably high dccutacy requirements |kest for

lomax too

allness too strict).

[1at Piscapfipg itrelevant parts of the pox. This 12 the heart of the

algarithm, Let wus assume thabt F is given by an arithmetical oxpression

and that the interval evaluwation ﬂ_xm_ of F at the interval box is

dafined. Then we can compute Flel for oll bomzes & c .=_ using the
interval arithmetic provided o.g. by PASCAL-SC, I D4Ftx) then x
contains no solublon point and 15 discarded [1,e. replaced by @1. Since
Flzl generally everestimates the range {Fix) | ¥€x), there may or may
ol be a salution point an x oF BEF{x). [n this cade we try bao spesd up
the alporithm by attempting to Find 2 smaller box #° contalning all

solutions Ln w,

We i1dlustrate the method in the casa m=1, n=d, where planar curves de-
scribed by one equation Ln tws unknownd are sought. 1n this caseé, the
prevlem 1o simpler since LU can be Lreated withoubt using linwar alge-

bBra. For the sike of clariby we weile our equation, restricted to a

YRTEUS _r.m H

R4}

W

n




2edimensional box, as
FU%. 90 = b, Xex. Vey,
wherey x,§ € IR, and denote by f, and {, interval extensions of the par-
tial derivatives with respect to the first and second variable, respec-
tively. The mean value theorom gives
0 = FLEF) = fliyder 1500 1F-¥)
= L yhed LE g L= 1k IR0 HT-y)
for suitable E€x, Wey, hence
1.t wﬁm-mu+w_m-m s¢ = | for some ica, HeEb, Eec,
where
b2.3] i o= ﬁ‘ﬁn.m_. b= ﬁqna,iv. = Flx,yl.
On the computer, c will also be a small interval, due to cubtward round-

ng tnterval arithmetic. 1€ O€a, b Lhen 12.2] implies

= biy-ylec
[2.4a1 ¥ E KT h. - ————— u o,

= a
ali-wlee

]

(2.4} e T ﬁw - ny,

and sften, &°,¥° are considerable improvemants over x,%. To particular,
this 1s likely the case when « and y are narrow intervals sipee then
the antervals a,b dafined in {2.3) will also be narrow, If 0€a or OCb
Lhen wo cannol use both formuloe of (2.4} but we can expleibt {7.2) by
using the ternary operator T gefined in [1.3). We get the enclosures
F2.8al  §E &' = Erta,bly-wlec, g-xl,
[2.50] Peyw Y-Plb,ajs-x)re, yoyl.
Since x-x ,y-y £ 0, the evalwatiaon of I Lakes at most one real divi-
sian. [F it Lurns out that one of the tntervals x' or y¥° computed by

tz 4} nr [2.5] 15 vmpty, the bes (.4} contains no solution point and

can be discarded; otherwise the algoritnm proceeds with (57 ,%') in

place of (w, y}:

In the general case we have Lo consider the problem

(2.5} Fixl = 1 iix
For 4 subbog % of the Lnitial bos =0, Using a capnter 36 (which Cakes
the glace of {x 'yl in the sbove consideration of Lhe cage m=1, n=2)

we hawe far each £ € OIF,x) and wach i= t,....m & tolatinn of the: form

- TE-

Fim, 3: & covertng Tar the hippaopede,

Somg af the e#xamples wore also Lried on other microcomputers:; the

following speed-up times were obierved on Examples 2 and 5

E.5 ATARE
6= 7 KWS SAMGAX  (without BAP)
12 - 15 kWS SAMEEK  [wibh BaR|
12 EWS FBGE/Z0 |withoul D4R
f. Final remarks

A1l system: solwved above were low-dimeniional polynomial systems. and

Lt seems that such systems are solved easily and peliatily by the covar-
ing molhod, There it no preblem in solving piecewtde polynomial sysbems
lwath rataonal wxpressions wnvolving also abs, maw,min) wien bhe slopes

larly

maier TERT. This makes the mathod parki

are caleuwlaled as

il d] design {CALDY

sultable for prablems ta computer aided Joom



3 8 D= £45) = FUZIFUENIE-E) for some Elex.
Useful charces for Lhe canter W are the midpoint or ono Lhe Ehe
corners of ¥, Let us write

K-z

diz= .

=i
1]

it Ehal

co s (),

note in particular that 4zb 1F the center is chosen as mhu. Using

£ A = IF' Lw) FIZ11;

=

ol

12,01

12. 80, we can Formulate [2.7) as a nomogenecus linear dnterwdl oquabion
i I =0, Eea, ded.
{Hote Ehab d2o af Mum.v If this limeor anterval system 1s found in-
compatibleo thesn & can bBe discarded; the hamogensous formulation (2.9
Le preferred to the Lahamapencous formulation
Ei-F1=-F131,  AeF-{a)
in order ta enhance the recogniticn of incompatibie systems for 111«

canditioned Jacobr matrices F'ixd,

Nomoganeous linear inmkterval equations are eonsidered in ‘Seckion 3

for inconsistency we shall peneralige (2,40, (2.5} ta

apdrt from Lest
canstruct an interval wvector d' © f swch that (2.9) implies ded', In

Lhis the active parkt ofF the bax x is contained in the subbox

w=Fed', and we may replaoce by x' wikhout losing the covearing
proparty of the set of bDoxes,

ian be calculated racur-

The derivitive dnclosuras reguired in [2.81
sively in PASCAL-SC (Rall [t81), reguiring arithmeticol expresdlons for
Lho mp [buet not for their déravativesl, In Fact 1t is more efficient to
replace the deravalives by interval slopes which satiséy similar recur-
sions |Xrawczyk and Heemaler [91, MNeumaier [161)) and vield o mabrix A

|, but with natrower coofficients than those

dlze satisfying [2,

obtainable by (F.8),

I._.__I

he situakion may be different for high dimensional systems — in parii-

cular 1f these involve funcbtions not defined for all values of Lhe

variables —, since, due to overestimation, the method may generate ini-

tially an eaxponéntial number of boxes, llocally, howewver, it can bo

Eha manifold 4

shown that the number of boxes 15 exponential only

mension p and oot in omoor Aol A simple example of this situatlen 1s the

2
i

this case a natural approach may be to combine Lhe covering methed with

system Flx)=0, whare mpﬁs_umxuh__-qp.a I=0% xumﬁa.ﬂh Iied, Lo /0, TA
continuation technigquoes to save saarching large empbty regions: simply
choose the next box near a bex containing a solution point, btaking in

account the directionm in which the curve Leaves the current box

mWHHHm=nHm
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[irL) Lhueck for empbty or small bowx, After having tried to make the box b
smaller b 114), we might have succeaded Ln discarding the whole bosx ",
in khis case we proceed with the next box from the stack, Or we might
hawie regquced the box to such small sLze thabt the specified accuracy [
requirements are satisfied) in this case the box 1s printod lor marked s
on a screen) and then discardod. As criterion for a box % Lo Buo amall 17.
We uned in pur amplementstion

& 1m mnw“” 1 g*au_ﬁamm_ vk A ) I Py e,
wilth Lntegars res, specifying the resolutionm; an additlonal test could s
bis based on function walues, prinbting and discavding a box z when the
encloture Flxjnhd for the range of F over x is small,

2110 Iefadnag) £ om, 18,
with a emall sumber 7 specified in advance. ” e
He gmphasize that, while every solution pelat of [2.1] 1% contained in 18,
some of the boxes pranted (14 the algorithm stops with emply stack), at
Ls not quarantesd that every box printed coatains a solution point: 4,
alsa the argument tn Saction | which showed that every % with Flzled
was discardod at some stage deponds on arbitrarily Fine subdivismiaon, b
i.e. holds only for e,n + 0, Howaver, it is possible to derive suffi- 1.
clent canditbions for the existence of 2 solubtion point in a box x;
similir 1n spLrit ta Ehe existence bests discussed in 04 [17] and 2.
Heumsier [T6R].

21.

tavl Bisectiopn. If the reducad bei is neither empty ner small, Ehe box #y
14 aplil gnto two bowes which are then replaced Lnta the stack. To
Guardnbtee fimite lermination and to enbance pirrow intervals in the
entries of (2.8}, It is sensible to bisect the bex in Lhe coprdinate i
with the largest radiuz. %o ¢ :4 splib inte s and X%, whers

N T P, QO ¢ A B

aH = qw E £y 1f L %k,
and Lhe indos k satisfies g_ax_hemu# ¥opls Hres; for all isk. Clearly,
after n-5 nesited bisections, rixl :-= Eux*nnn_uhﬂnu_.....mnu:_anmw:v Th]
boan reduced Eo nm.uu_gn.. hence after bt matt :.Hzmm_n&.suhm_ nasted
basections, & subbor is discarded. Since the active slach size [given
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