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The book, with the subtitle “With examples in parameter and state esti-
mation, robust control and robotics”, presents interval analysis in the con-
text of its applications. While there are a number of good recent books
[1, 9,12, 11, 19] featuring intervals in the context of numerical computations
and optimization, they all remain strictly within the limits of mathematics;
the only exception is a book by KOLEV [11] on interval methods in circuit
analysis. Thus the new book is a welcome addition, helping bridge the gap
between theory, tools, and applications.

Interval analysis was originally invented by MOORE [16, 17] for controlling
rounding errors in numerical computations; it serves in this role until today
by providing mathematical rigor in computer-assisted proofs in mathematics
and mathematical physics. The most conspicuous of these is HALES’s proof
[8] of Kepler’s over 300 years old conjecture that the face-centered cubic
lattice is the densest packing of equal spheres in 3-space. TUCKER’s recent
proof [21, 22] that the Lorenz attractor exists also needs interval analysis in
a nontrivial way. For other computer-assisted proofs see the recent reviews
by FROMMER [6] and FEFFERMANN & SECO [5].

A second, initially unexpected, use of interval analysis is based on its ability
to provide tools for attacking global questions about nonlinear problems, by
allowing a rigorous control of the deviation from nonlinearity. This turns
interval techniques into powerful and in some cases indispensable tools in
those applications outside mathematics which require the solution of global
problems.

The book under review is virtually silent about applications to computer-
assisted proofs. It is in the second role — solving global nonlinear problems —
that interval analysis is promoted in the book under review, and numerous
examples and illustrations show its use in engineering applications.

The book is organized into four parts. Part I gives a short motivation for
the book, Part II introduces in Chapters 2—4 operations on intervals, in-
terval vectors (= boxes), and interval matrices, basic properties of various



range enclosure forms, two basic workhorses, the branch-and bound princi-
ple (’subpavings’) and the contracion mapping principle ("contractors’), and
enhancements (constraint propagation and linear programming).

This part of the book is not recommended as an introduction to interval
analysis per se, where the books mentioned above do a better service. Re-
sults are usually given without proofs. Moreover, it seems that the authors
worked in isolation from the mainstream of interval analysis, since they in-
troduce numerous new names for traditional concepts (‘punctual matrix’ for
‘point matrix’, ’centered inclusion function’ for ’centered form’, ’convergence
rate’ for 'convergence order’, 'subpaving’ for 'partition into boxes’, "Krawczyk
contractor’ for 'Krawczyk operator’, ’external approximation’ for ’outer ap-
proximation’, etc.). Also, a number of concepts are discussed without giv-
ing references (no reference to KrAwczyk [13], who originated the nonlin-
ear fixed point techniges; no reference in the context of Taylor arithmetic
[4, 10, 14, 20]); the important wrapping effect is mentioned on p.16 with
some buzzwords only, but without references where one could get details; see
[18] for a recent survey.

Chapter 5 concludes Part II, with discussing variants of a generic algorithm
which guarantees to find all solutions (resp. tight inner and outer enclosures
of the solution set) of systems of equations and inequalities, global opti-
mization problems, and multilevel optimization problems (including mini-
max problems as a special case). This is the first time that global solvability
of the general multilevel optimization problem has been demonstrated algo-
rithmically.

However, nothing is said about speed, except vague references to the ’curse
of dimensionality’ (denoting the worst case exponential increase of work with
the problem dimension). Indeed, their examples and techniques are currently
limited to quite low dimensions. (The authors report on p.5 their unfortunate
decision to have different examples run on different hardware and software,
so that the reader gets no idea what can be done realistically.) On the other
hand, current global optimization codes that combine interval techniques
with tools from convex analysis (not treated in the book under review) have
been recorded [2, 7] to solve certain nonconvex problems with many hundreds
of variables. (An up-to-date survey of global optimization techniques is in
3))

Part III discusses in three chapters applications to nonlinear parameter es-
timation, nonlinear state prediction, robust control, and robotics. It is for



this part that the book is worth buying and studying.

Chapter 6 poses the parameter estimation problem as an optimization prob-
lem; in many cases local optimization leads to poor local minima only, and
the best fit requires global optimization. The problem appears in two vari-
ants, as least squares problem and as minimax problem, both amenable to
the general treatment of Chapter 5. It is interesting that interval techniques
not only give point estimates of the parameters, but can capture the set of all
parameter combinations that satisfy the desired relations within a given error
margin, even when this set has a complicated shape. This is important in
certain design problems. Modifications of the general scheme take care of the
additional difficulties produced by the presence of outliers and by error-in-
variables models. The application to state estimation in discrete dynamical
systems requires the use of more intermediate variables, but gives worst case
scenarios where the traditional extedned Kalman filter only provides point
estimates, which in highly nonlinear situations are of questionable value.

Chapter 7 discusses applications in robust control, allowing the analysis of
linear time-invariant dynamical systems depending on uncertain parameters,
again in a worst case setting. First, basic notions in control theory are re-
viewed (without proofs), which reduce the problem to a location analysis
of zeros of polynomials or eigenvalues of matrices. The fact that the coeffi-
cients of the polynomial or matrix are functions of parameters varying in a
box makes the stability verification a difficult, global constraint satisfaction
problem or a minimax problem, depending on the precise question asked.
These are solved by interval methods using the general methodology.

Chapter 8 contains applications to robotics. In this field, a host of low-
dimensional global problems exist whose solvability may have a significant
impact on how robots will be built in the future. In particular, so-called
parallel robots (MERLET [15]) have a much better load-weight ratio than
traditional serial robots, but their highly nonlinear (which means, for en-
gineers, often counterintuitive) nature makes them much more difficult to
design and operate. As the chapter shows, interval analysis is ideally suited
to solve such problems. Particular examples treated are the configurational
analysis of a (parallel) Gough platform, the problem of finding a collision-
less path in a known environment, and the problem of self-localization in a
partially known environment.

The final part IV deals with implementation issues. Covered are auto-
matic differentiation, IEEE arithmetic and directed rounding, and intervals



in C'++. A compact disc containing a trial version of the new Fortran Forte
Compiler of Sun Microsystems (with full interval arithmetic support) comes
together with the book.
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